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Large data

In combinatorics, one often deals with high-complexity

objects, such as

• Functions f : Fn
2 → R on a Hamming cube;

• Sets A ⊂ Fn
2 in that Hamming cube Fn

2 ; or

• Graphs G = (V, E) on |V | = N vertices.

One should think of |Fn
2 | = 2n and N as being very large,

thus these objects have a large amount of informational

entropy.
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In this talk we will be primarily concerned with dense

objects, e.g.

• Functions f : Fn
2 → R with

Ex∈Fn
2
f(x) := 1

2n

∑
x∈Fn

2
|f(x)| large;

• Sets A ⊂ Fn
2 with |A|/2n large;

• Graphs G = (V, E) with |E|/|
(

V
2

)
| large.

In particular, we shall regard sparse objects (or sparse

perturbations of dense objects) as “negligible”.
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All of the above objects can be modeled as elements of a

(real) finite-dimensional Hilbert space H:

• The functions f : Fn
2 → R form a Hilbert space H

with inner product 〈f, g〉H := Ex∈Fn
2
f(x)g(x).

• A set A ⊂ Fn
2 can be identified with its indicator

function 1A : Fn
2 → {0, 1}, which lies in H.

• A graph G = (V, E) can be identified with a

symmetric function 1E : V × V → {0, 1} in the

Hilbert space of functions f : V × V → R with norm

〈f, g〉H := Ev,w∈V f(v, w)g(v, w).
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The dimension of these Hilbert spaces is finite, but

extremely large. Thus these objects have many “degrees

of freedom”.

In combinatorics one often has to deal with arbitrary

objects in such a class - objects with no obvious usable

structure.
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Structure and pseudorandomness

While the space H of arbitrary objects under

consideration has a huge number of degrees of freedom,

the space of interesting or structured objects typically

has a much smaller number of degrees of freedom. What

“structured” means varies from context to context.
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Examples of structure:

• Functions f : Fn
2 → R which exhibit linear (Fourier)

behaviour;

• Functions f : Fn
2 → R which exhibit low-degree

polynomial (Reed-Muller) behaviour;

• Sets A ⊂ Fn
2 which only depend on a few of the

coordinates of Fn
2 (dictators, juntas);

• Graphs G = (V, E) which are determined by a

low-complexity vertex partition (e.g. complete

bipartite graphs).

One might also consider computational complexity

notions of structure.
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Sometimes it is important to distinguish between several

“quality levels” of structure:

• A “100%-structured” object might be one in which

some statistic measuring structure is exactly equal to

its theoretical maximum;

• A “99%-structured” object might be one in which

some statistic measuring structure is very close to its

theoretical maximum;

• A “1%-structured” object might be one in which

some statistic measuring structure is within a

multiplicative constant of its theoretical maximum.
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Example: linearity

• A function f : Fn
2 → {−1, +1} is “100%-linear” if we

have f(x + y) = f(x)f(y) for all x, y ∈ Fn
2 ;

• A function f : Fn
2 → {−1, +1} is “99%-linear” if we

have f(x + y) = f(x)f(y) for at least 1− ε of all

x, y ∈ Fn
2 ;

• A function f : Fn
2 → {−1, +1} is “1%-linear” if we

have f(x + y) = f(x)f(y) for at least 1
2

+ ε of all

x, y ∈ Fn
2 .

A 99%-linear function is always close to a 100%-linear

one (Blum-Luby-Rubinfeld); a 1%-linear function always

correlates with a 100%-linear one (Plancherel’s theorem).
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Given a concept of structure, one can often define a dual

notion of pseudorandom objects - objects which are

“almost orthogonal” or have “low correlation” with

structured objects.

One can often show by standard probabilistic, counting,

or entropy arguments that random objects tend to be

almost orthogonal to all structured objects, thus

justifying the terminology “pseudorandom”.
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Examples of pseudorandomness as duals of structure:

• Functions f : Fn
2 → R which are

Fourier-pseudorandom, i.e. have low Fourier

coefficients (dual of Fourier structure);

• Functions f : Fn
2 → R which are

polynomially-pseudorandom, i.e. have low

correlations with low-degree polynomials (dual of

Reed-Muller structure);

• Sets A ⊂ Fn
2 in which each coordinate has small

low-height Fourier coefficients (dual of dictators and

juntas);

• Graphs G = (V, E) which are ε-regular (dual of
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complete bipartite graphs).

12



In the previous examples, we began by defining structure

and then created a dual notion of pseudorandomness.

Thus pseudorandomness is defined “extrinsically”, by

measuring its correlation with structured objects. In

many cases we have an opposite situation: we begin with

an “intrinsically defined” notion of pseudorandomness

and wish to discover its dual notion of structure - the

“obstructions” to that conception of pseudorandomness.

Computing such duals explicitly can sometimes be

difficult, but is also very worthwhile; it provides a way to

test whether a given object is structured or

pseudorandom, or a combination of both.
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Examples of “intrinsic” pseudorandomness:

• Functions f : Fn
2 → R whose pair correlations

Ex∈Fn
2
f(x)f(x + h) are small for most h ∈ Fn

2 ;

• Functions f : Fn
2 → R whose k-point correlations

Ex∈Fn
2
f(x + h1) . . . f(x + hk) are small for most

h1, . . . , hk ∈ Fn
2 ;

• Functions f : Fn
2 → R whose Gowers norms

‖f‖Ud(Fn
2 ) := (EL:Fd

2→Fn
2
Ex∈Fn

2

∏
ω∈Fd

2
f(x + Lω))1/2d

are small;

• Graphs with a near-minimal (for a given edge

density) number of 4-cycles.
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Examples of structure as duals of pseudorandomness:

• A (bounded) function f : Fn
2 → R has many large

pair correlations if and only if has a large Fourier

coefficient. (Plancherel’s theorem)

• A (bounded) function f : Fn
2 → R has large Gowers

norm ‖f‖Ud(Fn
2 ) if and only if it has large correlation

with a Reed-Muller codeword of degree at most

d− 1. (Gowers inverse conjecture; only completely

proven for d ≤ 3.)

• A graph has a large number of 4-cycles if and only if

it is not ε-regular, i.e. it correlates with a complete

bipartite graph. (Chung-Graham-Wilson)
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General principles

0. Negligibility: pseudorandom objects tend to have

negligible impact on statistics, averages, or

correlations.

1. Dichotomy: Objects which are not pseudorandom

tend to correlate with a structured object, and vice

versa.
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2. Structure theorem: Arbitrary objects can be

decomposed into pseudorandom and structured

components, possibly up to a small error.

3. Rigidity: Objects which are “almost”, “statistically”,

or “locally” structured tend to be close to objects

which actually are structured.

4. Classification: Structured objects can often be

classified algebraically by using various bases.

These principles give a strategy to understand arbitrary

objects, by splitting them into their pseudorandom and

structured components.
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Structure theorems in Hilbert spaces

Let us now focus on more rigorous formulations of the

structure theorem principle. Specifically, given a

(bounded) vector f ∈ H, we would like to decompose

f = fstr + fpsd + ferr

where fstr is “structured”, fpsd is “pseudorandom”, and

ferr is a small error. One can view fstr as an “effective”

version of f , since fpsd and ferr are often negligible.

Sometimes we also want to enforce some orthogonality

between fstr, fpsd, and ferr.
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Example: orthogonal projection

Theorem 1. Let V be a subspace of H (con-

sisting of the “structured” vectors). Then ev-

ery f ∈ H can be uniquely decomposed as

f = fstr + fpsd + ferr, where

• fstr lies in V ;

• fpsd is orthogonal to V ; and

• ferr = 0.
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We recall that there are two standard proofs of this

theorem: the first using the Gram-Schmidt

orthogonalisation process, and the other by minimising

‖f − fstr‖2
H over all fstr ∈ V . The latter proof is more

relevant here; it relies on the dichotomy that if f − fstr is

not orthogonal to V , then one can adjust fstr in V in

order to decrease ‖f − fstr‖2
H .

One can view this variational approach as a prototype of

an “energy decrement argument” approach to structure

theorems.

20



Example: thresholding

Theorem 2. Let v1, . . . , vn be an orthonor-

mal basis of H (representing the fundamental

“structured” vectors). Let 0 < ε ≤ 1. Then

every f ∈ H with ‖f‖H ≤ 1 can be uniquely

decomposed as f = fstr + fpsd + ferr, where

• fstr =
∑

i∈I civi is such that |I| ≤ 1/ε2 and

ε < |ci| ≤ 1;

• fpsd =
∑

i6∈I civi is such that |〈fpsd, vi〉| ≤ ε

for all i; and

• ferr = 0.

Also, fstr and fpsd are orthogonal.
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This theorem can be proven quickly from the Fourier

inversion formula f =
∑

i〈f, vi〉vi and the Plancherel

identity ‖f‖2
H =

∑
i |〈f, vi〉|2. But it is instructive to see

a proof that relies less on these identities, and instead

runs via the following algorithm:

• Step 0. Initialise I = ∅, fstr = ferr = 0, and fpsd = f .

• Step 1. If |〈fpsd, vi〉| ≤ ε for all i then STOP.

• Step 2. Otherwise, locate an i such that

|〈fpsd, vi〉| > ε, and transfer i to I and 〈fpsd, vi〉vi to

fstr. Now return to Step 1.
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Note that at each stage of this algorithm, the energy

‖fstr‖2
H of fstr increases by at least ε2 (by Pythagoras’

theorem); or equivalently, the energy of ‖fpsd‖2
H decreases

by at least ε2. Also by Pythagoras’ theorem, we hve

0 ≤ ‖fstr‖2
H ≤ ‖f‖2

H ≤ 1. So the algorithm must

terminate after at most 1/ε2 steps.

One can view this algorithmic approach as a prototype of

the “energy increment argument” approach to structure

theorems.
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Now we consider a common situation, in which we have a

finite set S ⊂ H of “fundamental structured vectors”,

which have magnitude at most 1, but which are not

necessarily orthogonal. We would like to decompose an

arbitrary f ∈ H with ‖f‖H ≤ 1 into components

f = fstr + fpsd + ferr, where

• fstr can be “efficiently represented” as a bounded

linear combination of a few vectors from S;

• fpsd has low correlations with any vector from S; and

• ferr has a small norm ‖ferr‖H .

24



Examples of the set S of fundamental structured vectors:

• S could be the set of linear functions x 7→ (−1)ξ·x on

Fn
2 (Fourier characters).

• S could be the set of polynomial functions of degree

at most d on Fn
2 (Reed-Muller codewords).

• S could be the set of indicator functions

1A×B : V × V → {0, 1}, where A, B ⊂ V .

Our arguments here will not depend on the exact nature

of S, other than the hypothesis that every vector in S

has at most unit magnitude.
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If we fix S, we can define structure and

pseudorandomness more quantitatively:

Definition. A vector f ∈ H is (M, K)-

structured if one can write f =
∑K

i=1 civi for

some vi ∈ S and some real numbers ci with

|ci| ≤ M .

Definition. A vector f ∈ H is ε-

pseudorandom if we have |〈f, v〉| ≤ ε for all

v ∈ S.
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The orthogonal projection theorem (Theorem 1), applied

with V equal to the space spanned by S allows one to

decompose f = fstr + fpsd + ferr where fpsd is

0-pseudorandom and ‖ferr‖H = 0, but the only thing one

gets to say about fstr is that it is (M, K)-structured for

some M, K < ∞; no bound is provided.

The thresholding theorem (Theorem 2), in contrast, gives

a decomposition f = fstr + fpsd + ferr where fpsd is

ε-pseudorandom, ‖ferr‖H = 0, and fstr is

(1, 1/ε2)-structured; but it requires the vectors in S to be

orthonormal.
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One can generalise Theorem 2 to non-orthonormal

systems:

Weak structure theorem. Let 0 < ε ≤ 1.

Then every f ∈ H with ‖f‖H ≤ 1 can be de-

composed as f = fstr + fpsd + ferr, where

• fstr is (Oε(1), 1/ε2)-structured;

• fpsd is ε-pseudorandom;

• ferr = 0.

(The decomposition is no longer unique.)
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The proof proceeds by a slight modification of the energy

decrement argument:

• Step 0. Initialise fstr = ferr = 0, and fpsd = f .

• Step 1. If fpsd is ε-pseudorandom then STOP.

• Step 2. Otherwise, locate a v ∈ S such that

|〈fpsd, v〉| > ε. Transfer a small multiple of v to fstr,

ehough to decrease ‖fpsd‖2
H by at least ε2. Now

return to Step 1.

It is not difficult to show that this algorithm establishes

the theorem.

29



The weak structure theorem is often insufficient for many

applications, because the pseudorandomness of fpsd is not

particularly good compared with the complexity of fstr.

However, it can be iterated to a better theorem:

Strong structure theorem. Let 0 < ε ≤ 1,

and let F : Z+ → R+ be an arbitrary func-

tion. Then every f ∈ H with ‖f‖H ≤ 1 can be

decomposed as f = fstr + fpsd + ferr, where

• fstr is (M, M)-structured for some M =

OF,ε(1);

• fpsd is 1/F (M)-pseudorandom;

• ‖ferr‖H ≤ ε.
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Thus the pseudorandomness of fpsd can exceed the

structure of fstr by an arbitrary amount. The catch is

that the bound on M is poor, and that we must also

allow the error ferr to be non-zero.

With a bit of additional effort one can make fstr, fpsd,

and ferr orthogonal.
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Sketch of proof:

• Set M0 = 1 and Mi = F (Mi−1) for each

i = 1, 2, 3, . . ..

• For each i, we can decompose f = fstr,i + fpsd,i where

fpsd,i is 1/Mi-pseudorandom and fstri is (essentially)

(Mi, Mi)-structured.

• One can arrange matters so that all the

fstr,i+1 − fstr,i are orthogonal to each other. In

particular, ‖fstr,i‖2
H is increasing. By the pigeonhole

principle, we can thus find i = Oε(1) such that

‖fstr,i‖2
H − ‖fstr,i−1‖2

H ≤ ε.

• Now set fstr := fstr,i−1, fpsd := f − fstr,i, M = Mi−1,
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and ferr := fstr,i − fstr,i−1.
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As typical applications of the strong structure theorem,

one can establish the graph regularity lemma of

Szemerédi, and the arithmetic regularity lemma of Green.

One can also obtain a hypergraph regularity lemma by a

slightly more intricate application of the same ideas.

These lemmas have a number of applications, for instance

to establishing the testability of various graph-theoretic

and arithmetic properties.

In these applications, the growth function F usually

needs to be exponential growth. Since M is basically

obtained by iterating F about O(ε−O(1)) times, the

bounds obtained by these methods is usually

tower-exponential or worse in nature.
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Structure theorems in measure spaces

In many cases, the Hilbert space H arises from a

probability space (X,X , µ) as the space L2(X,X , µ) of

square-integrable, X -measurable functions. For instance:

• For functions f : Fn
2 → R, (X,X , µ) is the space

X = Fn
2 with uniform probability measure µ and the

discrete σ-algebra X .

• For graphs G = (V, E), (X,X , µ) is the space

X = V × V with uniform probability measure µ and

the discrete σ-algebra B.

X is typically a finite set, so X is a partition of X.
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In such contexts, one often wants the following

properties:

• Positivity preservation: if f is non-negative, then fstr

should also be non-negative.

• Comparison principle: if |f | ≤ g, then one should

have |fstr| ≤ gstr. For instance, if f is bounded

pointwise by 1, then fstr should be also.

The Hilbert space structure theorems do not provide

such properties. However, this can be fixed by working

with factors instead of vectors, and using conditional

expectation instead of orthogonal projection.
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A quick review of measure theory on finite sets:

Definition. A factor of (X,X , µ) is a triplet

Y = (Y,Y , π), where Y is a set, Y is a σ-

algebra (or partition) on Y , and π : X → Y is

a measurable map, thus π−1(Y) is a coarsen-

ing of X . The orthogonal projection E(f |Y) of

f ∈ L2(X,X , µ) to L2(X, π−1(Y), µ) is called

the conditional expectation of f relative to Y .

Example 1: If X, Y are discrete, µ is uniform measure,

π : X → Y is a colouring of X into distinct colour classes

{π−1(y) : y ∈ Y }, and f : X → R, then

E(f |Y)(x) := Eπ(x′)=π(x)f(x′).
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Example 2: Any function f : X → R generates a factor

Yf = (R,B, f), where B is the Borel σ-algebra; this is the

minimal factor with respect to which f is measurable,

and is generated by the level sets f−1({x}) of f .

Example 3: In many applications, one needs a discretised

version Yf,ε of the above construction, in which B is now

generated by the intervals [nε, (n + 1)ε) for n ∈ Z, thus f

is “almost” measurable with respect to Yf,ε, which is

generated by the level sets f−1([nε, (n + 1)ε)).

(For technical reasons one sometimes has to shift the

intervals [n, ε, (n + 1)ε) by a random translation.)
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Conditional expectation is “better” than other

orthogonal projections, because it preserves positivity,

f ≥ 0 =⇒ E(f |Y) ≥ 0

and also enjoys a comparison principle

|f | ≤ g =⇒ |E(f |Y)| ≤ E(g|Y).
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Definition. If Y = (Y,Y , π) and Y ′ =

(Y ′,Y ′, π′) are two factors of (X,X , µ), we let

Y ∨ Y ′ := (Y × Y ′,Y × Y ′, (π, π′)) be the join

of Y and Y ′.

Useful Pythagorean identities:

‖f‖2
L2 = ‖E(f |Y)‖2

L2 + ‖f − E(f |Y)‖2
L2

‖E(f |Y∨Y ′)‖2
L2 = ‖E(f |Y)‖2

L2 +‖E(f |Y∨Y ′)−E(f |Y)‖2
L2
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We now represent structure not by a collection S of

vectors, but instead by a collection § of factors (e.g.

factors generated by Reed-Muller codewords or by

complete bipartite graphs). Fixing §, we can then define

structure and pseudorandomness:

Definition. A function f is M -structured if

it is measurable with respect to Y1 . . .Ym for

some m ≤ M , where each Yi lies in §.

Definition. A function f is ε-pseudorandom

if we have ‖E(f |Y)‖L2 ≤ ε.
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By modifying the energy increment arguments discussed

previously, one can obtain weak and strong structure

theorems:

Weak structure theorem If ‖f‖L2(X) ≤ 1

and ε > 0, then we can decompose f = fstr +

fpsd + ferr where

• fstr is 1/ε2-structured. In fact we have

fstr = E(f |Y) for some 1/ε2-structured

factor Y .

• fpsd is ε-pseudorandom.

• ferr = 0.
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Strong structure theorem If ‖f‖L2(X) ≤ 1,

ε > 0, and F : Z+ → R+, then we can decom-

pose f = fstr + fpsd + ferr where

• fstr is M -structured for some M = OF,ε(1).

In fact we have fstr = E(f |Y) for some M -

structured factor Y .

• fpsd is 1/F (M)-pseudorandom.

• ‖ferr‖L2 ≤ ε.
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A weak structure theorem of this type (with the

condition ‖f‖L2(X) ≤ 1 replaced by a weaker condition),

together with the comparison principle, was decisive in

establishing that the primes contained arbitrarily long

arithmetic progressions.

Strong structure theorems of this type are related to

structural theorems in ergodic theory, and can be used

for instance to establish Szemerédi’s theorem on

arithmetic progressions.
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Gowers uniformity

Now we specialise to a very specific notion of structure

and pseudorandomness, given by the Gowers uniformity

norm

‖f‖Ud(Fn
2 ) := (EL:Fd

2→Fn
2
Ex

∏
ω∈Fd

2

f(x + Lω))1/2d

of a function f : Fn
2 → R for d ≥ 1. The dth Gowers norm

reflects the extent to which f behaves like a Reed-Muller

codeword of order d− 1 (i.e. (−1)P , where P is a

polynomial over F2 of degree at most d).
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Examples:

‖f‖U1(Fn
2 ) = |Ex∈Fn

2
f(x)f(x + h)|1/2

= |Ex∈Fn
2
f(x)|

‖f‖U2(Fn
2 ) = |Ex,h,k∈Fn

2
f(x)f(x + h)f(x + k)f(x + h + k)|1/4

‖f‖U3(Fn
2 ) = |Ex,h,k,l∈Fn

2
f(x)f(x + h)f(x + k) . . . f(x + h + k + l)|1/8

Functions with small Ud norm are called Gowers uniform

of order d− 1.
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Some easy facts:

• Monotonicity:

‖f‖U1 ≤ ‖f‖U2 ≤ ‖f‖U3 ≤ . . . ≤ ‖f‖L∞ .

• Cauchy-Schwarz-Gowers inequality:

|EL:Fd
2→Fn

2
Ex

∏
ω∈Fd

2

fω(x + Lω)| ≤
∏
ω∈Fd

2

‖fω‖Ud .

• Norm properties:

‖f + g‖Ud ≤ ‖f‖Ud + ‖g‖Ud ; ‖cf‖Ud = |c|‖f‖Ud

‖f‖Ud = 0 ⇐⇒ f = 0 for d ≥ 2
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If f takes values in {−1, +1}, then ‖f‖Ud ranges between

0 and 1. If ‖f‖2d

Ud = 1− ε, then we have the identity

f(x) =
∏

ω1,...,ωd={0,1}:(ω1,...,ωd) 6=0

f(x + ω1h1 + . . . + ωdhd)

for randomly chosen x, h1, . . . , hd ∈ Fn
2 with probability

1− ε/2. For instance, if ‖f‖4
U2 = 1− ε, then

P (f(x) = f(x + h)f(x + k)f(x + h + k)) = 1− ε/2.
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From this, one can show

100% inverse structure theorem Let f :

Fn
2 → {−1, 1} and d ≥ 1. Then ‖f‖Ud = 1

if and only if f is a Reed-Muller codeword of

order d− 1.

99% inverse structure theorem Let f :

Fn
2 → {−1, 1}, d ≥ 1, and ε > 0. Then

if ‖f‖Ud ≥ 1 − δ for some sufficiently small

δ = δ(ε, d) > 0, f is within ε in L2 norm of a

Reed-Muller codeword of order d− 1.
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The first result is easy to prove by exploiting functional

equations such as f(x) = f(x + h)f(x + k)f(x + h + k).

The second result is due to

Alon-Kaufman-Krivelevich-Litsyn-Ron, and implies that

Reed-Muller codes are locally testable. The rough idea is

to use expressions such as f(x + h)f(x + k)f(x + h + k)

as a “vote” as to what f(x) should be, and then use

majority vote to discover the Reed-Muller codeword.

Another approach is to proceed inductively, observing

that if f has large Ud norm then fT hf will have large

Ud−1 norm for most h, where T hf(x) := f(x + h) is the

shift of f by h.
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The following result is conjectured:

1% inverse structure theorem? Let f :

Fn
2 → {−1, 1}, d ≥ 1, and ε > 0. Then if

‖f‖Ud ≥ ε, then there exists a Reed-Muller

codeword g of order d−1 such that |〈f, g〉| �d,ε

1.

This is known for d ≤ 2 by Plancherel’s theorem, and

also for d = 3 (Samorodnitsky). It remains open for

d > 3, and is known as the Gowers inverse conjecture for

Fn
2 . Very recently, Ben Green and I have been able to

verify this conjecture in the case that f is a Reed-Muller

codeword of much higher (but bounded) degree.

In the converse direction, one can easily show that
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‖f‖Ud ≥ |〈f, g〉| for all Reed-Muller codewords g of order

d− 1.
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The Gowers inverse conjecture, when combined with the

general structured theorems discussed earlier, would have

many useful applications. Basically, one would be able to

split any function f into a bounded number of

Reed-Muller codewords of order d− 1, plus an error fpsd

which is Gowers uniform of order d− 1, and perhaps

another small error ferr. This decomposition would allow

us to understand local arithmetic patterns in functions in

much the same way that the Szemerédi regularity lemma

allows us to understand local patterns inside large graphs.
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Besides the Gowers inverse conjecture, there are some

related open problems in this area. One is to improve the

quantitative bounds in the known results for that

conjecture. Another is to establish an algorithmic

version: the current arguments that produce a

Reed-Muller codeword g correlating with a given function

f of large norm are computationally expensive.

A related problem is to find a fast way to compute

‖f‖Ud(Fn
2 ) exactly. Clearly ‖f‖U1(Fn

2 ) requires O(2n)

computations. Using the fast Fourier transform, one can

compute ‖f‖U2(Fn
2 ) in O(n2n) computations. But even

with the FFT, we only know how to compute ‖f‖U3(Fn
2 )

in O(n22n) computations. Can we do better?
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